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Abstract

We consider the mixed gravitational Yang–Mills anomaly as the coupling between the K-theory
and K-homology of a C∗-algebra crossed product. The index theorem of Connes–Moscovici al-
lows to compute the Chern character of the K-cycle by local formulae involving connections and
curvatures. It gives a topological interpretation to the anomaly, in the sense of noncommutative
algebras. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a previous paper [9], we proved a formula computing the topological anomaly of gauge
theories, in the very general framework on noncommutative geometry [4]. This formula
reduces just to the pairing between the K-theory classes of loops in the gauge group, and
some K-homology classes arising from abstract Dirac-type operators. This simple remark
allows one to compare the usual BRS machinery with cyclic cohomology [4]. Both are
nontrivial as local cohomologies, but we feel that cyclic cohomology is more suitable since
it can be directly related to the analytic content of the Dirac-type operator via the Chern
character, whereas BRS cohomology has no obvious link with index theory in general.

In this paper, we want to apply the topological anomaly formula in the mixed gravita-
tional Yang–Mills case, i.e. when the gauge group is the crossed product of Yang–Mills
transformations on a manifold X with a group of diffeomorphisms acting on X. Here the
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Chern character of the K-cycle involved takes its values in the cyclic cohomology of an
algebra crossed product. The local index theorem of Connes and Moscovici [6] then ex-
presses this Chern character in terms of Gelfand–Fuchs cohomology. We shall compute it
by connections and curvatures, and see that it gives expressions very similar to the usual
ones encountered in the (BRS) study of gravitational anomalies. However, there is an es-
sential difference here: ordinary BRS methods deal with Lie algebra cohomology, whereas
the characteristic classes for crossed products involve group cohomology. Of course both
are related by van Est-type theorems, but we insist on the fact that group considerations can
describe gravitational anomalies topologically, as the pairing of nontrivial cyclic cocycles
with the K-theory of a (noncommutative) algebra crossed product.

This paper is organized as follows. In Section 2, we recall the anomaly formula in the
case of Yang–Mills theories, with particular emphasis on its link with Bott periodicity, and
we improve it by taking the diffeomorphisms into account.

In Section 3, we present a relatively self-contained collection of some classical results
of Bott [2] and Haefliger [8] concerning equivariant cohomology and Gelfand–Fuchs co-
homology, and apply it to the Connes–Moscovici index theorem for crossed products.

In Section 4, we illustrate these tools by the study of conformal transformations on a
Riemann surface. This gives rise to a nontrivial cyclic cocycle, corresponding to a conformal
anomaly.

2. The anomaly formula

2.1. Yang–Mills anomalies

Let X be an even-dimensional oriented smooth manifold, C0(X) the C∗-algebra of con-
tinuous complex-valued functions vanishing at infinity. We consider a K-cycle over X. For
concreteness, let us take the signature complex: endow X with a Riemannian metric and
let H = H+ ⊕ H− be the Hilbert space of L2 differential forms on X, with Z2-graduation
given by self- and anti-self-duality. The elliptic signature operator D = d + d∗ acts on a
dense domain of H as an odd unbounded self-adjoint operator. The pair (H,D) defines in
this way a K-homology class [D] ∈ K∗(C0(X)).

A typical situation in quantum field theory is the following. Let N be a positive integer,
and consider the group G = UN(C

∞
c (X)) of N × N unitary matrices with entries in the

algebra of smooth compactly supported functions C∞
c (X). It is the group of Yang–Mills

transformations, with structure group UN (if X is not compact, one should add a unit). G
acts on the tensor product H ⊗CN by even bounded endomorphisms. In general the elliptic
operator comes equipped with an Yang–Mills connection A,

DA = D + A, (1)

which transforms under the gauge group according to the adjoint representation:

DA → u−1DAu, u ∈ G, A → u−1Au + u−1[D,u]. (2)
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As we work with Z2-graded spaces we adopt the usual matricial notation

DA =
(

0 D−
A

D+
A 0

)
, u =

(
u+ 0

0 u−

)
, H =

(
H+
H−

)
. (3)

Consider now the chiral action

S(ψ+, ψ−, A) = 〈ψ−,D+
Aψ+〉, ψ± ∈ H±. (4)

If we quantize the fields ψ± according to the Fermi statistics, then the vacuum functional

Z(A) =
∫

[dψ] e−S(ψ+,ψ−,A) (5)

is simply given by a regularized determinant det D+
A , see [10] (for the Bose statistics one

takes the inverse determinant). In general it is not invariant under the gauge group, i.e.

det D+
A �= det(u−1DAu)

+. (6)

Define the loop group GS1
as the set of smooth maps

g : S1 → UN(C
∞
c (X)) (7)

with base-point as the identity. The product is pointwise. Let t ∈ [0, 2π) be the coordinate
on S1. Given a loop g ∈ GS1

the determinant Z(t) = det(g−1(t)DAg(t))
+ is an invertible

C-valued function on S1 and the topological anomaly is just the winding number

w = 1

2π i

∫
S1

dZ(t)

Z(t)
∈ Z. (8)

The anomaly formula of Perrot [9] relates it to the K-cycle [D] as follows. First the loop
group GS1

may be identified with UN(C
∞
c (S1 ×X)). Then any element g in the loop group

determines a class [g] of the K-theory group K1(C0(S
1 × X)). The operator

Q =
(

i∂t D−
A

D+
A −i∂t

)
, (9)

acting on sections of the Hilbert bundleH×S1, represents an oddK-cycle for theC∗-algebra
C0(S

1×X). Let ch∗(Q) be its Chern character [4] in the odd cyclic cohomology ofC∞
c (S1×

X). One has a well-defined, homotopy-invariant, integral pairing

w = 〈[g], ch∗(Q)〉 ∈ Z (10)

computing the value of the topological (Yang–Mills) anomaly on the loop g [9].
Observe that in (10) any reference to the connectionAdisappears. It is a purely topological

formula involving theK-homology class ofQ and theK-theory element [g]. In particular, if
the first homotopy group ofUN(C0(X)) is zero, then any loop g is contractible and its image
[g] vanishes in K1(C0(X × S1)). By increasing N , we may eventually choose nontrivial
loops detected by Q, which is really the essence of K-theory.



84 D. Perrot / Journal of Geometry and Physics 39 (2001) 81–95

In [9], we established the anomaly formula in a more general setting, allowing for X to
be a noncommutative “space” described by an associative algebra A together with an even
Fredholm module (H,D) [4] playing the role of the previous elliptic operator. Our goal in
the following is to apply these ideas in the case of gravitational theories, where the gauge
group contains the diffeomorphisms Diff(X) of the manifold X. The relevant space is the
groupoid X � Diff(X), which is highly noncommutative in nature.

2.2. The gravitational case

We thus implement the above construction by taking the diffeomorphisms of X into
account. The group of mixed Yang–Mills � gravitational transformations is the crossed
productUN(C

∞
c (X))�Diff(X), which lies in the matrix algebra ofA = C∞

c (X)�Diff(X).
The associative algebra A is generated by the symbols

a = fU∗
ψ, f ∈ C∞

c (X), ψ ∈ Diff(X) (11)

with product rule

(f1U
∗
ψ1
)(f2U

∗
ψ2
) = f1(f2 ◦ ψ1)U

∗
ψ2ψ1

, (12)

where f2 ◦ψ1 is the pullback of f2 byψ1. Since we are mostly concerned withK-theory, we
shall enlarge this group to all invertible elements GlN(A) as well. Thus we are dealing with
transformations involving matrices of diffeomorphisms. The physical interpretation seems
obscure at first sight, but our motivation comes from the fact that the group Diff(X) does
not generally contain enough nontrivial loops. We shall see in the following that provided
we consider matrix algebras, in the same philosophy as in the Yang–Mills case, the anomaly
formula detects nontrivial topological objects related to diffeomorphisms. Let us explain
carefully the construction in this case.

Let Diff(S1, X) denote the subgroup of Diff(S1 × X) consisting in diffeomorphisms ψ
such that

pr ◦ ψ = pr, (13)

where pr : S1 × X → S1 is the projection onto the first factor. Then Diff(S1, X) plays
the role of the loop group of Diff(X). Thus we identify the loop group of GlN(A) with
GlN(C∞

c (S1 × X)� Diff(S1, X)).
From now on put M = S1 ×X. For the sake of definiteness, let Γ be a discrete countable

subgroup of Diff(S1, X). We choose the loops as elements of GlN(C∞
c (M) � Γ ) and

consider their images in the group K1 of the C∗-algebra C0(M)� Γ . As before we would
like to evaluate theseK-theory classes on someK-cycleQ. The previous signature operator
is not suitable in this case because it does not define aK-cycle forC0(M)�Γ . This problem
is solved as in [5] by passing to the bundle P over M , whose fiber at x ∈ M is the set of all
Euclidean metrics on the tangent space TxM . Γ acts canonically on P and the K-theory of
C0(M)� Γ lifts through the Thom map of Connes [3]

β : K∗(C0(M)� Γ ) → K∗(C0(P )� Γ ). (14)
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On this bundle P of metrics one can construct a differential operator Q representing a
K-cycle for C0(P )� Γ , playing the role of the signature class [5]. If we let ch∗(Q) be its
Chern character in the cyclic cohomology of C∞

c (P ) � Γ , the anomaly formula amounts
to the computation of

〈β([g]), ch∗(Q)〉, [g] ∈ K1(C0(M)� Γ ) (15)

for any loop g. In the following sections, we shall use the index theorem of Connes and
Moscovici [6] to express ch∗(Q) as an equivariant cohomology class. The latter is con-
structed from connections and curvatures in great analogy with the usual expressions of
gravitational anomalies found in the literature. This together with the nontriviality of ch∗(Q)

gives an interesting K-theoretical interpretation of these anomalies.

2.3. Remark on Bott periodicity

Note that in the context of C∗-algebras, the pure Yang–Mills anomaly has a simple
interpretation in terms of Bott periodicity [1, Section 9]. Indeed the set of homotopy classes
of loops in U∞(C0(X)) with base-point 1 is isomorphic to the group K1 of the suspension
of C0(X). Moreover, the product in the loop group of U∞(C0(X)) can eventually be taken
as the concatenation of loops, so that

π1(U∞(C0(X))) � K1(C0(X × R)), (16)

and Bott periodicity stands for the isomorphism

θ : K0(C0(X)) → K1(C0(X × R)). (17)

Also the Chern character of the differential operator (9) is just the cup product

ch∗(Q) = ch∗(D)#[S1], (18)

between ch∗(D) in the cyclic cohomology of C∞
c (X) and the fundamental class of the

circle. Hence one has an equality (see, e.g. [4, p. 225, Proposition 3c])

〈[g], ch∗(Q)〉 = 〈θ−1([g]), ch∗(D)〉 (19)

for any loop g ∈ GS1
. It follows that the evaluation of the Yang–Mills anomaly on a loop

in the gauge group U∞(C∞
c (X)) is equivalent to the coupling between the K-theory of X

and the K-homology class [D]. This interpretation does not hold true for the gravitational
anomaly because C0(M)� Γ is not the suspension of a C∗-algebra in general.

3. Characteristic classes for crossed products

In this section, we recall basic facts about equivariant cohomology and Gelfand–Fuchs
cohomology. Most of this material can be found in [2,8]. It allows to compute the charac-
teristic classes of the crossed product M � Γ appearing in the Connes–Moscovici index
theorem [6], in terms of connections and curvatures.
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3.1. Equivariant cohomology

Let M be an oriented manifold, and Γ a discrete group acting on M by orientation-
preserving diffeomorphisms. In the following, we will not distinguish an element g of Γ
and the corresponding diffeomorphism.

The space of homogeneous cochains of bidegree n,m is zero if n < 0 orm < 0 otherwise
it is the space Cn,m(M) of maps u from Γ n+1 to the differential forms Ωm(M) of degree
m on M , subject to the equivariance condition

u(g0g, . . . , gng) = u(g0, . . . , gn) ◦ g, gi, g ∈ Γ, (20)

where ◦g denotes the pullback by the diffeomorphism g. On the complex C∗,∗ one defines
two differentials. The first one � : Cn,m → Cn+1,m is the simplicial differential

(�u)(g0, . . . , gn+1) = (–)m
n+1∑
i=0

(–)iu(g0, . . . ,
∨
gi, . . . , gn+1), (21)

where ∨ denotes omission. The second one d : Cn,m → Cn,m+1 is the de Rham coboundary

(du)(g0, . . . , gn) = d(u(g0, . . . , gn)). (22)

The signs are chosen so that d2 = �2 = d� + �d = 0. Geometrically, the total complex
(C∗,∗, d+�) describes the complex of cochains on the homotopy quotientMΓ = M×Γ EΓ .
By definition its cohomology is the equivariant cohomology H ∗(MΓ ) of M .

It will be convenient for us to consider the following ring structure on homogeneous
cochains. For u ∈ Cn,m and v ∈ Cp,q , the product uv ∈ Cn+p,m+q is

(uv)(g0, . . . , gn+p) = (–)nqu(g0, . . . , gn)v(gn, . . . , gn+p). (23)

This product is associative and compatible with equivariance. Moreover, the Leibniz rule
is satisfied:

d(uv) = duv + (–)n+mu dv, �(uv) = �uv + (–)n+mu �v (24)

with n + m the total degree of u. Thus (Cn,m, d + �) is a graded differential algebra.
Recall also [8] that the above complex of homogeneous cochains is isomorphic to the

complex of group cochains C∗(Γ,Ω∗(M)) with coefficients in the differential forms of M .
To u ∈ Cn,m(M) corresponds the group cochain f ∈ Cn(Γ,Ωm(M)):

f (g1, . . . , gn) := u(g1, . . . , gn, g2, . . . , gn, . . . , gn, 1), (25)

and the associated coboundary operator � : Cn(Γ,Ωm) → Cn+1(Γ,Ωm) reads

�f (g1, . . . , gn+1) = f (g2, . . . , gn+1) +
n∑

i=1

(–)if (g1, . . . , gi, gi+1, . . . , gn+1)

+(–)n+1f (g1, . . . , gn) ◦ gn+1. (26)
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3.2. Jet bundles

Let n be the dimension of the manifold M . Let J+
k be the space of k-jets of orientation-

preserving diffeomorphisms

j : Rn → M (27)

from a neighborhood of 0 in Rn to M . Given a local coordinate system {xµ}, µ = 1, . . . , n
on M , J+

k has coordinates {xµ, yµi , yµi1i2 , . . . , y
µ
i1,...,ik

} corresponding to the jet

jµ(u) = xµ + y
µ
i u

i + 1

2
y
µ
ij u

iuj + · · · + 1

k!
y
µ
i1,...,ik

ui1 , . . . , uik , u ∈ Rn. (28)

In particular, the matrix (yµi ) belongs to Gl+n (R), and the real numbers yµi1,...,il are symmetric
in low indices.
J+
k is a principal bundle over M with structure group Gk consisting in the set of k-jets h

fixing 0: hµ(0) = 0. The right action of Gk on J+
k is simply the composition of jets:

j → j ◦ h, j ∈ J+
k , h ∈ Gk. (29)

Since any (k+ 1)-jet yields a k-jet, J+
k+1 is a principal bundle over J+

k with structure group
the kernel of the projection Gk+1 → Gk . We get in this way a tower of bundles

· · · → J+
k → · · · → J+

1 → M. (30)

We write the inverse limit J+∞. Note that J+
1 is the bundle of oriented frames on M .

The action of Γ on M lifts on J+
k by left composition of jets

j → g ◦ j, j ∈ J+
k , g ∈ Γ, (31)

and clearly commutes with Gk . In particular, the group SOn ⊂ Gl+n sits in Gk as a maximal
compact subgroup and Γ still acts on the quotient Pk = J+

k /SOn, which is a bundle
with contractible fiber over M . The action of an element a ∈ SOn is given by the right
composition by the jet

hi(u) = aiju
j , u ∈ Rn, (32)

where a = (aij ) is a matrix in SOn. Explicitly the vertical coordinates of a point in J+
k

change according to the rule

y
µ
i1,...,il

→ y
µ
j1,...,jl

a
j1
i1
, . . . , a

jl
il
. (33)

Thus one has a tower of bundles with contractible fiber

· · · → Pk → · · · → P1 → M (34)

with inverse limit P∞. Remark that P1 is the bundle of metrics over M . Since Γ lifts on
each Pk , the homotopy quotient Pk,Γ = Pk ×Γ EΓ is a bundle over MΓ with contractible
fiber, which induces an isomorphism in equivariant cohomology

H ∗(Pk,Γ ) � H ∗(MΓ ), (35)

and also for the limit H ∗(P∞,Γ ).
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3.3. Gelfand–Fuchs cohomology

Given a coordinate chart {xµ, yµi , . . . , yµi1,...,ik , . . .}, we identify locally J+∞ with the
pseudogroup of all diffeomorphisms Rn → R

n. Its Lie algebra a corresponds to the formal
vector fields of Rn. Let Ω∗

inv(J
+∞) be the complex of invariant forms under the left action

of Diff(M) on jets by composition

j → ϕ ◦ j, ϕ ∈ Diff(M). (36)

It is naturally isomorphic to the complex of Lie algebra cochains C∗(a,R). An algebraic
basis of Diff(M)-invariant forms on J+∞ is provided by expanding the Maurer–Cartan form
“j−1 ◦ dj” in powers of u ∈ Rn:

(j−1 ◦ dj)i(u) = θi + θij u
i + 1

2
θijku

juk + · · · + 1

k!
θij1,...,jk

uj1 , . . . , ujk + · · · . (37)

Due to the Diff(M)-invariance, the one-forms θ are globally defined on J+∞. Actually,
θij1,...,jk

is already defined on J+
k+1. For example

θi = (y−1)iµ dxµ (38)

lies on J+
1 (here ((y−1)iµ) is the inverse matrix of (yµi )),

θij = (y−1)iµ dyµj − y
µ

jk(y
−1)iµ(y

−1)kν dxν (39)

lies on J+
2 , and so on. Thus the Gelfand–Fuchs cohomology H ∗(a,R) is naturally isomor-

phic to the cohomology of invariant forms H ∗(Ω∗
inv(J

+∞)). It is computed as follows [7].
The group Gln(R) acts on Rn be linear diffeomorphisms. Let g ⊂ a be its the Lie algebra.
The Weil algebra associated to g is the tensor product

W = ∧g∗ ⊗ S(g∗) (40)

of the exterior algebra on the dual space g∗ of g, by the symmetric algebra S(g∗). W is a
graded differential algebra: it is generated by the elements of degree 1

ωi
j ∈ ∧1g∗ (41)

of the canonical basis of g∗ and

Ωi
j ∈ S1(g∗) (42)

of degree 2. A differential dW is uniquely defined by

dWωi
j = Ωi

j − ωi
kω

k
j , dWΩi

j = Ωi
kω

k
j − ωi

kΩ
k
j . (43)

Next we consider θij as the coefficients of a connection 1-form on a with values in g, and
its curvature

Ri
j = dθij + θikθ

k
j . (44)
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Then from Chern–Weil theory one has a morphism

ψ : W → Ω∗
inv(J

+
∞), (45)

which sends ωi
j onto θij and Ωi

j onto Ri
j . Furthermore, the 2-form Ri

j is proportional to dxµ

and hence any polynomial in R of degree >n vanishes. It follows that ψ factorizes through
Wn, the quotient of W by the differential ideal generated by the elements in S(g∗) of degree
>2n. The first result of Gelfand–Fuchs the following theorem [7].

Theorem 1. The map ψ : Wn → Ω∗
inv(J

+∞) induces an isomorphism in cohomology.

This theorem also admits a version relative to the action of SOn on a. The complex of
SOn-basic cochains C∗(a,SOn) is naturally isomorphic to the invariant forms on P∞ =
J+∞/SOn. Since SOn ⊂ Gln, Wn is an SOn-algebra. Let W SOn be its subalgebra of basic
elements relative to the action of SOn. Then ψ maps W SOn to Ω∗

inv(P∞) and one has the
following theorem [7].

Theorem 2. The map ψ induces an isomorphism

H ∗(W SOn) � H ∗(Ω∗
inv(P∞)). (46)

Next we want to send these classes into the equivariant cohomology of M . Remark that
there is an injection

i : Ωm(P∞) → C0,m(P∞), (47)

which to any (not necessarily invariant) differential form α on P∞ associates the homoge-
neous 0-cochain

α(g0) := α ◦ g0 ∀g0 ∈ Γ. (48)

It is clear that under this map the image of a closed form inΩ∗
inv(P∞) is both d- and �-closed,

and hence defines an equivariant cohomology class on P∞,Γ . Thus one gets a canonical
map

H ∗(W SOn) → H ∗(P∞,Γ ) � H ∗(MΓ ). (49)

Note finally that the image of W SOn by ψ lives in P2 = J+
2 /SOn since the forms θij and

Ri
j = dθij + θikθ

k
j are defined on J+

2 . It is then sufficient to work on P2 instead of P∞.

3.4. Computation of H ∗(W SOn)

We restrict to the case of a manifold M of odd dimension n. In the truncated Weil
algebra Wn, the Chern classes ci , i = 1, . . . , n, correspond to the terms of degree 2i in the
determinant of the n × n matrix 1 + Ω . In particular,

c1 = Ωi
i , c2 = 1

2 ((Ω
i
i )

2 − Ωi
jΩ

j
i ), cn = det Ω. (50)
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For i odd one can choose an element ui of degree 2i − 1 in W SOn such that dWui = ci .
Let E(u1, u3, . . . , un) be the exterior algebra in the ui , i odd ≤ n, and R[c1, c2, . . . , cn]
the algebra of polynomials in all the ci quotiented by the ideal of elements of degree strictly
higher than 2n. The tensor product

WUn = R[c1, . . . , cn] ⊗ E(u1, . . . , un) (51)

is endowed with the differential d such that dui = ci . Then one has the following theorem
[7].

Theorem 3. The inclusion WUn → W SOn induces an isomorphism in cohomology.

In particular, if we define the Pontrjagin classes

pi = c2i ∀i ≤ 1
2 (n − 1), n odd, (52)

then H ∗(W SOn) always contains the polynomial algebra R[p1, p2, . . .]trunc in the pi’s
truncated by the elements of degree >2n.

3.5. The Connes–Moscovici index theorem

Let P = P1 be the bundle of metrics over the odd-dimensional manifold M . On P the
hypoelliptic signature operator Q of Connes and Moscovici [5] defines a K-cycle for the
algebra C0(P )� Γ . By Connes [4, Section 3.2.�] one has an injective map

Φ : H ∗(P ×Γ EΓ ) ↪→ HC∗
per(C

∞
c (P )� Γ ) (53)

from equivariant cohomology to the periodic cyclic cohomology of the crossed product
C∞
c (P )�Γ . The index theorem of Connes and Moscovici [6] states that the Chern character

ch∗(Q) ∈ HC∗
per(C

∞
c (P ) � Γ ) is in the range of Gelfand–Fuchs cohomology. Actually

ch∗(Q) has a preimage in the Pontrjagin ring R[p1, p2, . . .]trunc.
If we apply this construction to the situation of Section 2, where M = S1 × X and Γ is

a loop group of diffeomorphisms on X, the complete computation of the anomaly formula
(15)

〈β([g]), ch∗(Q)〉, [g] ∈ K1(C0(M)� Γ ) (54)

yields an expression containing the image of the Pontrjagin classes in H ∗(MΓ ) and other
characteristic classes accounting for the Thom isomorphism β. In the following section,
we compute the image of the Pontrjagin ring in the particular case of Riemann surfaces
and conformal transformations, and see that the result looks like familiar gravitational
anomalies. The same holds clearly true in the general case.

4. Application to Riemann surfaces

Let us have a look at the simplest example. We take M as the product of S1 by a Rie-
mann surface Σ . We view it as a trivial fiber bundle over S1 with fiber Σ . Let Γ be a
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discrete (pseudo)group of orientation preserving diffeomorphisms on M fulfilling the two
conditions:

1. Each fiber Σ over S1 is globally Γ -invariant.
2. The restriction of Γ to a fiber is a conformal transformation of Σ .

Thus according to Section 2 an element of Γ is a loop of conformal transformations of
Σ . Choose a local coordinate system (z, z̄) related to the complex structure of Σ , and let
t ∈ [0, 2π) be the variable on S1. For any g ∈ Γ , we write

z ◦ g = Zg, z̄ ◦ g = Z̄g, t ◦ g = t. (55)

The jet bundlesJ+
k have local coordinates (xµ, yµi , . . . , y

µ
i1,...,ik

), where the indicesµ, il, . . .,
can assume any of the three values (z, z̄, t). Of course xµ are identified with the coordinates
on M:

xz = z, xz̄ = z̄, xt = t. (56)

Since the (real) dimension of M is n = 3 the Pontrjagin ring of the Gelfand–Fuchs coho-
mology H ∗(W SO3) only contains the unit 1 and the first Pontrjagin class p1 = c2. From
the last section, we know thatp1 is represented by a closedΓ -invariant 4-form on the bundle
P2 = J+

2 /SO3, explicitly given in terms of the tautological curvature Ri
j , i, j = (z, z̄, t):

p1 = 1
2 ((R

i
i )

2 − Ri
jR

j
i ) ∈ Ω4

inv(P2). (57)

We denote p̂1 its image in H 4(P2,Γ ) � H 4(MΓ ).

4.1. Restriction to a subbundle

Since Γ is a group of conformal transformations of the fibers Σ leaving t invariant, one
can restrict the geometry to the subbundle J̃+

2 of J+
2 consisting in holomorphic 2-jets

u ∈ R3 → j (u) ∈ M, (58)

which read in coordinates

jz(u) = z + yzzu
z + yzt u

t + 1
2y

z
zzu

zuz + yzztu
zut + 1

2y
z
ttu

tut ,

j z̄(u) = z̄ + yz̄z̄u
z̄ + yz̄t u

t + 1
2y

z̄
zzu

z̄uz̄ + yz̄z̄t u
z̄ut + 1

2y
z̄
ttu

tut ,

j t (u) = t + ut . (59)

Then the 2-jets of the elements of Γ are contained in J̃+
2 . J̃+

2 is a principal bundle over M ,
whose structure group contains SO2 as a maximal compact subgroup. The action of SO2 is
obtained by the right composition

j ∈ J̃+
2 → j ◦ h ∈ J̃+

2 , (60)

where h is the jet of the rotation by an angle α:

hz(u) = eiαuz, hz̄(u) = e−iαuz̄, ht (u) = ut . (61)
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Thus P̃2 = J̃+
2 /SO2 is a Γ -bundle over M with contractible fiber so that H ∗(P̃2,Γ ) =

H ∗(MΓ ). Moreover, P̃2 is a Γ -invariant subbundle of P2 and the injection P̃2 → P2 is a
homotopy equivalence. Now p̂1 ∈ H ∗(MΓ ) may equivalently be represented by a closed
invariant form on P̃2 corresponding to the pullback of (57). One computes that the pullbacks
of the curvature coefficients Ri

j are nonzero only for Rz
z, R

z
t , R

z̄
z̄ , R

z̄
t , hence

p̂1 = 1
2 ((R

z
z + Rz̄

z̄)
2 − (Rz

z)
2 − (Rz̄

z̄ )
2) = Rz

zR
z̄
z̄ (62)

is the pullback of p̂1 on J̃+
2 , and is SO2-basic. In terms of the tautological connection θij

(Eq. (25)) on J̃+
2 one has Rz

z = dθzz with

θzz = (y−1)zz dyzz − yzzz(y
−1)zz((y

−1)zz dz + (y−1)zt dt) − yzzt(y
−1)zz dt, (63)

and similarly for Rz̄
z̄ . In the following, we shall write R (resp. R̄) instead of Rz

z (resp. Rz̄
z̄)

and θ (resp. θ̄ ) instead of θzz (resp. θ z̄z̄ ). Remark that the 1-form θ + θ̄ is SO2-basic, which

implies that the cohomology class of R + R̄ in the Γ -invariant forms on P̃2 is zero. Thus
RR̄ is cohomologous to −R2 and we shall keep the latter as a representative of p̂1.

It is possible now to express p̂1 as an equivariant cocycle on MΓ . Choose a Kähler metric
ρ(z, z̄) dz ⊗ dz̄ on Σ . Then the associated connection on J̃+

2 is the globally defined (not
Γ -invariant) 1-form

ω = (y−1)zz dyzz + dz∂z ln ρ. (64)

Of course it corresponds to the z
z component of the connection form associated with ρ on

the frame bundle. We shall regard it as an equivariant cochain on J̃+
2 through the inclusion

Ω1(J̃+
2 ) → C0,1(J̃+

2 ). The equivariant curvatureΩ = (d+�)ω is an element ofC0,2(J̃+
2 )⊕

C1,1(J̃+
2 ):

Ω(g0, g1) = �ω(g0, g1) = −ω ◦ g1 + ω ◦ g0,

Ω(g0) = dω(g0) = dω ◦ g0, gi ∈ Γ. (65)

In fact, Ω lives in MΓ . Indeed, for gi ∈ Γ , let Z′
i denote the function ∂z(z ◦ gi). One has

(with ∂ = dz ∂z)

ω ◦ gi = (y−1)zz dyzz + d lnZ′
i + (∂ ln ρ) ◦ gi, (66)

so that

Ω(g0, g1) = d lnZ′
0 − d lnZ′

1 + (∂ ln ρ) ◦ g0 − (∂ ln ρ) ◦ g1,

Ω(g0) = −(∂∂̄ ln ρ) ◦ g0. (67)

Here ∂∂̄ ln ρ is the curvature 2-form of the Kähler metric. Using the multiplicative structure
on equivariant cohomology (Section 3), we consider the cocycle −Ω2. It is cohomologous
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to −R2 in H 4(P̃2,Γ ), indeed

Ω2 − R2 = 1
2 (d + �)((ω − θ)(Ω + R) + (Ω + R)(ω − θ)), (68)

and ω − θ is an SO2-basic equivariant 1-form on J̃+
2 . Thus we have proved the following

theorem.

Theorem 4. The equivariant 4-cocycle −Ω2 represents the image of p1 ∈ H ∗(W SO3) in
H 4(MΓ ).

4.2. Link with conformal anomalies

Using formula (25), we can express p̂1 as a group cocycle p̃1 in C1(Γ,Ω3(M)) ⊕
C2(Γ,Ω2(M)):

p̃1(g) = p̂1(g, 1), p̃1(g1, g2) = p̂1(g1g2, g2, 1). (69)

The first component p̃1(g) is related to conformal anomalies as follows. Let g : S1 →
Diff(Σ) be a loop of conformal transformations of Σ , i.e., g ∈ Diff(S1,Σ) according to
the notations of Section 2. Then p̃1(g) is a 3-form on M = S1 × Σ :

p̃1(g) = −Ω(g, 1)Ω(1) − Ω(g)Ω(g, 1) = (d lnZ′ + (∂ ln ρ) ◦ g)Rρ

+Rρ ◦ g((d lnZ′) ◦ g−1 − (∂ ln ρ) ◦ g−1) ◦ g, (70)

where Z = z◦g and Z′ = ∂zZ. Rρ = ∂∂̄ ln ρ is the curvature associated to ρ. Let us define
the z-component of the ghost vector field

ξz = dt ∂tZ ◦ g−1. (71)

It is a 1-form on S1 with values in the (conformal) vector fields of Σ . Equivalently, it is the
pullback of the Maurer–Cartan form on Diff(Σ) by the loop g. One computes that

Rρ(d lnZ′ + (∂ ln ρ) ◦ g) = Rρ(Dzξ
z) ◦ g, (72)

where Dzξ
z = ∂zξ

z + ξz∂z ln ρ is the covariant derivative. In the same way define

(ξ−1)z = dt ∂t (z ◦ g−1) ◦ g, (73)

one has

(Rρ ◦ g)((d lnZ′) ◦ g−1 − (∂ ln ρ) ◦ g−1) ◦ g = −(Rρ ◦ g)Dz(ξ
−1)z. (74)

If the loop g is the identity of Σ at t = 0, then

p̃1(g)t=0 = 2RρDzξ
z (75)

is the usual expression for the infinitesimal variation, under the ghost vector field ξ , of the
vacuum functional of a field theory on Σ , i.e. a gravitational anomaly.
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Now the Chern character of the signature operator Q (Section 2), contains the image of
p̃1 by the injection

Φ : H ∗(MΓ ) � H ∗(P ×Γ EΓ ) ↪→ HC∗(C∞
c (P )� Γ ), (76)

where P is the bundle of all metrics (not necessarily Kähler) on the three-dimensional
real manifold M . The topological anomaly formula then gives an integrated version of the
infinitesimal variation (75), and is in general nonzero, provided we evaluate the anomaly
on invertible matrices over the algebra C∞

c (M)� Γ .

4.3. Nontriviality of p̃1

To show that p̃1 and, consequently, its image in HC∗(C∞
c (P ) � Γ ), is in general a

nontrivial cohomology class, we shall construct a cycle c in the equivariant homology with
compact support H∗(MΓ ), whose evaluation on p̃1 is nonzero. Since it is sufficient to do
this in a particular case, let us take for Σ the Riemann sphere C ∪ {∞}, and ρ(z, z̄) = 1.
Then the only nonzero component of p̃1 lies in C2(Γ,Ω2(M)):

p̃1(g1, g2) = −Ω2(g1g2, g2, 1) = Ω(g1g2, g2)Ω(g2, 1) = (d lnZ′
1) ◦ g2 d lnZ′

2.

(77)

The equivariant homology is computed by the bicomplex (Cn,m)n,m≥0,

Cn,m = C[Γ ]⊗n ⊗ Ωm(M), (78)

where C[Γ ] is the group ring of Γ and Ωm(M) the space of m-dimensional de Rham
currents with compact support on M . The first boundary map � : Cn,m → Cn−1,m is

�(g1 ⊗ · · · ⊗ gn ⊗ C) = g2 ⊗ · · · ⊗ gn ⊗ C +
n∑

i=1

(–)ig1 ⊗ · · · ⊗ gigi+1

⊗ · · · ⊗ gn ⊗ C + (–)n+1g1 ⊗ · · · ⊗ gn−1 ⊗ gnC, (79)

where gnC is the left action of gn ∈ Γ on the current C ∈ Ωm(M) by pushforward. The
second differential ∂ : Cn,m → Cn,m−1 is the de Rham boundary (not to be confused with
the previous dz ∂z!)

∂(g1 ⊗ · · · ⊗ gn ⊗ C) = (–)ng1 ⊗ · · · ⊗ gn ⊗ ∂C. (80)

We shall construct the cycle c as an element of C1,3 ⊕C2,2. Let Γ be such that g1, g2 ∈ Γ

with

z ◦ gj = Zj = eitnj

z
, t ◦ gj = t, j = 1, 2, nj ∈ Z. (81)

Choose an orientation on M = S1 × Σ and let C ∈ Ω3(M) be the current corresponding
to the integration of 3-forms over the full cylinder

C = {(z, z̄, t) ∈ M|zz̄ ≤ 1}. (82)
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One checks that

gi∂C = −∂C, g1g2C = C, (83)

which implies that

c := g1 ⊗ g2 ⊗ ∂C + (g2 − g1 − g1g2) ⊗ C (84)

represents a homology class in H4(MΓ ;Z):
(∂ + �)c = 0. (85)

Therefore the pairing between p̃1 and c is simply given by

〈p̃1, c〉 =
∫
∂C

p̃1(g1, g2), (86)

which gives, up to an irrelevant sign depending on the orientation, the difference
8π2(n1 − n2).
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